Student name (Block capitals):

TASK 1:

A capacitor dielectric consists of two plain sheets of dielectric materials a and b, see Fig. <<<.

Thickness $t_a = 5$ mm, $t_b = 2$ mm, material properties: $\varepsilon_{ra} = 4$, ϵ_{rb} = 6, E_{ma} = 3 MV/m, E_{mb} = 5 MV/m. Sheet dimensions are $2m \times 2m \times t_{a_i} 2m \times 2m \times t_{b.}$

Find out:

a) Capacitance C of the capacitor

(5p)

b) Breakdown voltage of the capacitor

(5b)

TASK 2:

A ferromagnetic core (see Fig. <<<) has the following properties: Average fluxline length L = 0.44 m, relative permeability $\mu_r = 1150$, h = 2a = 18 mm. The core ic completed by N turns of a wire, forming an inductor.

Specify:

- a) The number of turns N resulting in inductance of 1 H. (5p)
- b) DC current fed into the inductor resulting in core flux density B=1T.

(5p)

TASK 3:

A coaxial cable has air dielectric and the following dimensions: $r_a = 2$ mm, $r_b = 4$ mm.

Specify:

a) The characteristic impedance of the cable (5p)

b) Breakdown voltage of the cable $(E_m = 3 \text{ MV/m})$ (3p)

c) Maxima of RF power delivered through the cable to a load (time average value) (2p)

Student name (Block capitals):

Theory	Task1	Task2	Task3	AddOns	Result	
				40		

1.	Coulomb	o's law.									
2.	. Ohm's law – both [integral and differential] notations										
3.	Four [ma	in] Maxwell equa	tions.								
4.	Dynamic	c definition of se	elf- and mutual	inductance(s).							
5. 6.	, and the second of the second components										
7.	Biot-Sava	art's law			v						
8.	Wave eq	uation for E									
9.	Wave in	npedance as a fu	nction of freque	ency and materia	al prop	erties	8				

10. Poynting vector – definition