January 10, 2025

Theory	Task1	Task2	Task3	AddOns	Result

- 1. Coulomb's law.
- 2. Ohm's law both [integral and differential] notations
- 3. Four [main] Maxwell equations:

- 4. Static definitions of self- and mutual inductance:
- 5. Skin depth as a function of frequency and material properties :
- 6. Boundary conditions for **E**, **D** interface between two dielectrics tangential components:
- 7. Biot-Savart's law:
- 8. Wave equation for **E**:
- 9. Wave impedance of TE modes in a metallic waveguide given as a function of frequency:
- 10. Poynting theorem:

TASK 1:

Two metallic balls are placed in vacuum at the distance of 2 m, carrying charges +Q and –Q. Radii of both balls are equal to 10 mm. Electrostatic force attracting the balls is 1 μ N. Find out:

- a) Charge Q (4p)
 b) Location of the maxima of Electric field strength (3p)
- c) The field strength in the middle of the structure (eg. between the balls) (3p)

Results:

a)	b)	c)

TASK 2:

Current I = 1 kA is fed to the load through a line composed of two wires of circular crossection. Diameter of each of these conductors is equal to 15 mm and the spacing between these conductors is 2 m. Both conductors are made of copper (σ = 57 000 000 S/m) The line is 1 km long, loaded by a resistor R = 2 Ω . Find out:

d)	Current density within the conductors	(2p)
e)	Force (caused by the currents) that affects conductors	(4p)
f)	Voltage at the input of the line	(4p)

Results:

d)	e)	f)

TASK 3:

An electromagnetic wave, propagating from a distant source in the direction of z. At z = 0 it carries average power of 1kW per square meter, through a partially conductive material. The wave frequency is equal to 2.45 GHz, material properties: $\sigma = 2$ S/m, $\varepsilon_r = 42$, $\mu = \mu_0$. Specify:

g) The distance z_1 , where the average power density falls down to 10 W per square meter (7p).

(3p).

h) Wavelength of the wave within this material.

Results:

 $\epsilon_0=8.854\ pF/m,\,\mu_0=400\pi\,nH/m$