
Theory	Task1	Task2	Task3	AddOns	Result

- 1. Coulomb's law.
- 2. Ohm's law both [integral and differential] notations.
- 3. Four [main] Maxwell equations.

- 4. Boundary conditions at the interface between two conductors.
- 5. Skin depth as a function of frequency and material properties.
- 6. Boundary conditions for B, H interface between two magnetics tangential components.
- 7. Biot-Savart's law.
- 8. Wave equation for E.
- 9. Wave impedance as a function of frequency and material properties.
- 10. Poynting vector definition.

a) Capacity per meter of this arrangement

b) Breakdown voltage of the capacitor

TASK 1:

A capacitor of co-axial crossection (see figure on the left) consists of an inner cylindrical conductor, a = 2 mm, thin outer conductor, c = 5 mm and two dielectrics. The interface between dielectrics is @ b = 3 mm. Inner dielectric cylindrical layer relative permitivity ε_{r1} equals 4 while the relative permitivity ε_{r2} of the outer dielectric is equal to 2. Maximum electric field strengths for the two dielectrics $E_{p1 \text{ and }}E_{p2}$ are 10 MV/m

Find out:

and 2 MV/m.

(5p) (5b)

Task 2:

A lossless coaxial transmission line, $\varepsilon_r = 1$, $Z_0 = 50 \Omega$ is loaded by a series combination of a resistor and a capacitor where $R = 50 \Omega$, C = 68 pF. Based on a frequency f = 300 MHz find out:

a)	Magnitude of the reflection	(2p)
b)	Standing wave ratio (SWR)	(4p)
c)	Input impedance of the setup for cable length 250 mm.	(4p)

Task 3:

A circular (single) loop antenna has a diameter d = 500 mm. A planar electromagnetic wave propagates from the transmitter in the z – direction, while the amplitude of electric field strength is equal to $E_y=50$ mV/m. Free space wavelength is 251 m. Specify:

1.	Frequency	(1 p)
2.	Effective voltage induced into the open loop.	(7p)

3. Orientation of the antenna providing maximum output voltage. (2p)